OR-Notes são uma série de notas introdutórias sobre tópicos que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram usados originalmente por mim em um curso introdutório OR que eu dou no Imperial College. Estão agora disponíveis para uso por qualquer estudante e professor interessado em OU sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média do mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel média MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup2 3 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) Sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup2 4 10,44 No geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-cortada em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o suavização exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Qual das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar este comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses de dois para sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando suavização exponencial com uma constante de suavização de 0,1 nós Get: Como antes, a previsão para o mês oito é apenas a média para o mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, descobrimos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. No geral, verificamos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo de Markov, onde as marcas de estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses para os meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês de 9 m 9 20.33. Por isso (como não podemos ter uma demanda fracionada), a previsão para o mês 10 é 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, descobrimos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem uma MSD mais baixa. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão Exame de 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de aparelhos de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2, obtemos: como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38,618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, descobrimos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem uma MSD mais baixa. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 de UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Um mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando suavização exponencial com uma constante de suavização de 0,7, obtemos: na prática, a média móvel proporcionará uma boa estimativa da média da série temporal se a média for Constante ou lentamente mudando. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m mais pequeno é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra as séries temporais usadas para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Depois, ela se torna constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas utilizadas para o exemplo. Quando usamos a tabela, devemos lembrar que, em qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série cada vez maior com tendência a. Os valores de lag e de polarização do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Além disso, as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Como as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com uma média constante. Este termo é minimizado fazendo o m o mais grande possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas da média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.
Arquitetura do sistema de comércio algorítmico Anteriormente neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de comércio algorítmico de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO IEC IEEE 42010 e padrão de descrição de arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve: Conter várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Manter a rastreabilidade entre decisões de design e requisitos arquitetônicos. Definição de arquitetura de software. Ainda não existe consenso sobre o que é uma arquitetura de sistemas. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisit...
Comments
Post a Comment